If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+(2a)^2=64
We move all terms to the left:
a^2+(2a)^2-(64)=0
We add all the numbers together, and all the variables
3a^2-64=0
a = 3; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·3·(-64)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*3}=\frac{0-16\sqrt{3}}{6} =-\frac{16\sqrt{3}}{6} =-\frac{8\sqrt{3}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*3}=\frac{0+16\sqrt{3}}{6} =\frac{16\sqrt{3}}{6} =\frac{8\sqrt{3}}{3} $
| m+109=267 | | 180=(x+6)+(4x-21) | | 9x^2=35 | | 5p×-6=150 | | (Y+80)/4=2/3y | | 754=29n | | (3x-2)²=12 | | 5(2x-4)-6(x+4)-3(x-8)=2x-(1-×)-19 | | -2x-7(x-16)=13 | | (2x+5)=37 | | –7.35=y/–2+–5.08 | | x-40/10=x | | 3(2x-5)-4x=13-2x-8 | | -2x-4(3x-22)=208 | | 11-4t=3 | | 4/6x5-1=9-1/6x5 | | 2(x-4)-2(x-2)=3x | | 4(5y-1)-3y=13 | | 2x(3x-26)=180 | | 2(x²+4x)=18- | | a=4a+180 | | -9/5+4/3y=-1/2 | | 193=4x+7(5x-17) | | b²-16b=0 | | 7w=4•21 | | (x-5)=(x-3) | | 3x-22=131 | | 3x-22=49 | | 4f+13=41 | | 3x-22=51 | | 1t+15=31 | | 6/w-2.1=21.3 |